Tilt stability of rotating current rings with resistive conductors
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The combined effects of rotation and resistive passive conductors on the stability of a rigid current
ring in an external magnetic field are studied. Numerical and approximate analytical solutions to
the equations of motion are presented, which show that the ring is always tilt unstable on the
resistive decay time scale of the conductors, although rotation and eddy currents may stabilize it
over short times. Possible applications of our model include spheromaks which rotate or are

encircled by energetic particle rings.

I. INTRODUCTION

A major difficulty for the confinement of plasma in the
spheromak configuration® is the tendency of the system to
tilt. The tilting instability can be understood qualitatively by
noting that the magnetic moment of the toroidal current
distribution is antiparallel to the vacuum field imposed for
confinement. It is well known that this position is a potential
energy maximum.

A system of passive coils has been proposed to stabilize
the tilt modes.2 However, these modes are expected to be
unstable on the time scale in which currents decay in the
coils.? Stabilization of the plasma by an energetic particle
ring has been suggested.* The stabilizing effect of rotation by
the plasma itself has also been investigated.>®

The purpose of this paper is to study the combined ef-
fects of rotation and resistive passive conductors on the tilt
instability. There are different physical situations to which
our calculations apply: If rotation is slow compared to other
dynamical times, then the stabilizing effect of rotation is
weak, and stabilization must be provided by passive coils.
We can then ask whether the fluctuating emf applied to the
coils by the precessing, tilting system can sustain the eddy
currents. On the other hand, if rotation is rapid enough for
dynamic stabilization, torques exerted by the resistive con-
ductors may modify the precession. We consider the case of
slow rotation to be probably most applicable to a plasma,
and the case of fast rotation to be most applicable to an ener-
getic particle ring.

We consider a simple model problem in which a rigid
ring of fixed current rotates and nutates in a uniform exter-
nal field. The ring is surrounded by a set of resistive, passive
coils, in which stabilizing currents are induced when the ring
tilts. Our simple model for the plasma neglects internal dy-
namics and shape changes that can accompany a tilt instabil-
ity,”® but provides a useful framework for understanding
basic effects.

In Sec. II coupled equations are derived for the motion
of the ring and the induction of the field, and in Sec. III
numerical and approximate analytical solutions to the equa-
tions of motion are presented. We find that, although preces-
sion of the ring does inhibit the decay of currents in the coils,
the precession is eventually halted by a torque about the
vertical. This torque is inherently caused by finite coil resis-
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tivity. Once the precession ceases and the eddy currents de-
cay, the ring rapidly loses equilibrium.

In Sec. IV we summarize our results and briefly discuss
their implications for spheromak and other systems.

IIl. DYNAMICAL EQUATIONS

The torque on a circuit with magnetic moment m in a
uniform magnetic field B is

= mXB. (1)
We adopt this as the basic equation of motion. Corrections
caused by field nonuniformity are mentioned below.

Euler angles are convenient dynamical variables for the
ring. We follow the notation of Goldstein®: 2’ is a body-fixed
axis perpendicular to the plane of the ring, and the tilt angle
@ is the angle between the 2’ and the space-fixed 2 axis. The
intersection of the ring plane and the space x-y plane is the
line of nodes, and the precession angle ¢ is the angle between
the line of nodes and the space x axis. The angle ¢ is the angle
between the line of nodes and the x’ axis rotating with the
ring.

Equations of motion equivalent to Eq. (1) can be derived
from a Lagrangian in which the potential energy is
U= — m-B. In terms of the Euler angles,

m = mz' = m(X sin @ sin ¢
—psinfcos¢g +2cosf). (2)
The field B consists of an imposed negative vertical field
— 2B, plus the field caused by induced currents in the sur-
rounding passive coils and can be written
B =2%B, sin B —~ pB, cos 8 + 3(B, — B,), (3)

where B, sin 8, B, cos 3, and B, are the %, §, 2 components

of the induced field. The magnitudes B, and B, and the

angle S8 are determined self-consistently below in terms of

given coil specifications and the dynamics of the tilting ring.
The Lagrangian is then

L=4{824+¢%sin?8) + (¢ + ¢ cos 8)* + wi(B,/B, — 1)
X cos 0 + w(B,/By)sin 8 cos(¢ — ), (4)

where we have normalized by dividing by 7 /4, a horizontal
component of the inertia tensor, and

w2=4mB,/I.
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Lagrange’s equations are

by = 2 + $cosf)=0; Py = 20 = const; (5a)
= (psin® @ + 2w cos O
= — w?(B,/B,)sin 9 sin{¢ — F); (5b)

Po =0 =¢?sin 0 cos 6 — 2w¢ sin 9
— wi(B,/By — 1)sin 8 + w}(B,,/By)cos & cos(p — B).
(5¢)

To solve these equations we need an explicit expression
for the field produced by the passive coils. A completely
realistic calculation would depend explicitly on details of the
coil structure and would lead to a spatially nonuniform field.
This is more than we need, because our equation of motion
assumes a uniform field. In view of this and to preserve some
generality in our calculation, we will make a very simple
model of the field which should embody most of the neces-
sary physics.

We assume that the passive coils are circular and have
negligible mutual inductance so that the current in each coil
is driven only by the tilting of the current ring. We calculate
the field produced by one such coil, then sum over all coils.
We do this in two limiting approximations: a far field case, in
which the current loops interact like dipoles, and a near field
approximation in which the ring and coils are separated by a
distance less than their radii. Let the vector from the center
of the current ring to the center of the coil be AR, the normal
to the coil be 1., a, be its radius, and m, and m, be the ring
and coil magnetic moments (see Fig. 1). Then the flux &
through the coil because of the ring current is given in gen-
eral by the product of the ring current and the mutual induc-
tance of the two circuits. In our model

= 2h .3
D =m,malbh -2,

and the field at the plasma caused by the induced coil current
is

B=bm,
where

b=23(f+A.)A—#r)/R> if a, <R, (6a)
and

b=2#./a} if a.»R. {6b)

EQUATORIAL PLANE

FIG. 1. Location of passive conductors (@) relative to current ring ( X ). Cen-
ter positions are shown.
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The magnetic moment of the coil is found by solving the
circuit equation for the current Z, in the coil:
dl c I — c do
dt L dt’

Here L is the self-inductance of the coil and y=R /L is the
resistive decay rate. The solution for I, is

L) == . fdt explit’ —1)] dzy, )
and the field caused by the coil is
B= — (m,/L)ra’b(b - w),
where
t Alig?
WEf dt’ explylt’ —t)] di(i'l (7)
0 dt

We now superimpose the fields of a set of coils. Consider
a sphere of radius R centered on the current ring. The ring
defines the equatorial plane of the sphere. Four identical
coils are placed on a parallel of latitude of the sphere and
spaced 7/2 apart (see Fig. 1). The angle 7 « 7, is the same for
each coil. Such a set is a crude model of the figure 8 coils
proposed for a spheromak?; another set of four coils is placed
at equivalent positions on the opposite hemisphere. The ith
component of the total field is then

(3 )

the cross terms cancel because of the symmetry of the coil
positions,

To calculate the = b},. sums for each component, we
write /2 and 71, for the first coil as

n=2%sin&siny —Psin& cosy + 2 cos &,
fi, =Xsin{siny —Psinfcosy +2cosl.
Then, in the near field approximation,

zbz Zb _8s1n§

i=1 i=1 ac

a,>R. (8)

In the far field approximation,

3 bi=3 b}
i=1 i=1

— [3(R - A.)cos & —cos & 17},
z b% =4[3(f+h,)cos € —cos RO

AN +1

a.<R. (9)

Notice that if # = 7i. expressions (8) and (9) coincide when
a. =R.
To make contact with the notation for B introduced in

Eq. (3) we let
B, __mma; al
L

(562) =

4
i”’—L’fz—"i@b 2, (10)

B*By= (2b7)

mpmtat
L
define the induced horizontal and vertical field strengths.
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We then integrate w by parts and use Eq. (2) for 2’ to derive
explicit expressions for B,, B, cos 8, and B, sin . This re-
sults in the final equations of motion [which are Eqgs. (5b) and
(5¢) rewritten using the calculated induced field],

& = ¢ 2 sin 0 cos 6 — 20 sin 8 + w sin 8

+ w}(B? — a®)sin 6 cos @

+ Yo} J dt’ exp[y(t’ —t)]
0

X {a?cos O (t)sin O(t')cos[¢ (¢) — & (¢')]
—B%sin@(t')cos B ()]},

Py = ——azwgyﬁdt’ exp[y(¢’ —¢)]sin @ (¢')sin[¢ (z)

—¢t)]. (11b)
The parameters o and 87 in Eqgs. (11a) and (11b) completely
describe the effect of passive coils in our model. These con-
stants are to be calculated from Eq. (10) and Eqgs. (8) or (9),
depending on whether the coils are close to or far from the
current ring.

(11a)

lil. TILT DYNAMICS

Equation (11) can be solved for the tilt angle 6 and tilt
orientation ¢ as functions of time. In the absence of dissipa-
tion, p, is conserved and the dynamics is analogous to a
sleeping top in gravity.” Referring back to Eq. (5), and noting
that when ¥ = 0 the vector w defined in Eq. (7) is simply 2’
itself, we see that when ¥ = O the horizontal components of
the induced field are exactly aligned with the tilt direction.
The presence of resistivity causes the induced field to be
slightly out of phase with the tilt direction, leading to a
torque on p; .

There are two widely separated time scales in the prob-
lem: the dynamical time scale, of order wg !, and the resis-
tive time scale, of order ¥~ typically y/w,~10"2-1072.
We will first study the motion in the ideal limit, with ¥ = 0,
and then see how the configuration evolves when resistivity
is present.

When y = 0, there is an energy integral for the system

E=102+V(9),

where
V(0)=4[(p, ~ 20 cos 6)/sin’ 6 ] + o’

+ g cos O + (w2/4)(B* — a’)cos 20, (12)

and ¢ hasbeen eliminated in favor of 6 and p, . The motion in
@ is periodic, and the system is usefully “stable” if the outer
turning point in & is small.
We first consider the potential ¥ when p, and » are
zero. Then, ¥V has extrema at 8§ =0, §=7, and 6
=cos ™ '[1/(a? —~ B?)]. If B* —a® < — 1, the points § =0
and @ = 7 are minima, while if 3% — a?> 1, they are maxi-
ma, and the minimum of the potential well occurs for 6> 7/
2.If |B? — a?| <1, 6 = 0 is a maximum and 6 = 7 a mini-
mum.
These results show that the best situation for stability is
one in which 82 — a? < — 1, so that oscillations about zero
exist for E <w?/2(a* — B?) + wi(a® — §?)/4. The induced
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vertical field, represented by B, is therefore destabilizing,
while the induced horizontal field, represented by a?, is sta-
bilizing. From Egs. (8), (9), and (10) we see that 8 ?<a? if the
coil position angles § and & are chosen to be near 7/2. We
will henceforth assume that this is the case and drop 8. The
B2 terms do not interact with the rotation, which is our pri-
mary interest here.

The result that @® > 1 for stability is related to a similar,
linearized analysis'® in which the effect of a nonzero field
index n;= — (r/B 3B /Jr was considered. In order for us to
take the field index into account, we must calculate the
torque on the current ring because of a nonuniform field; this
results in the third term in V(@) being replaced by
2w%(1 — n,)/(n; + 2) cos @ and is inessential for our calcula-
tion.

We now consider the effect of rotation. Even a small
value of w or p, changes the problem qualitatively because
centrifugal barriers appear at § = 0 and 6 = 7. We can make
this case analytically tractable by considering E and ¥V for
small angles. Then

E' —owp =102 +p%/20% + [0® + (@* — 1)0}](0%/2),
(13)
P'=p, —20=0}(¢— o),
E'=E — 0’ — 0} + d*0}/4,
where 6, and @, are the initial values of 6 and #. In making
this expansion, we have used the fact that p’ is of order 2.
Itis clear from the form of Eq. (13) that a potential mini-
mum near & = O exists only if [#? + (@® — 1)w] ] > 0. Thisis
consistent with other results on the stabilization of rings by
rotation*>!" when conductors are absent; w* > w3 for stabil-
ity.
We can exactly solve the equation of motion derived
from Eq. (13). The result is

' » ' n2 23172

92 =1E '2a)p ) + ((E ':up ) _‘pTz‘) cos2w't,
[ [ @

(14)

0"=0®+ (@ — 1)w}

(we have chosen @, = 0). Notice that in the limit w—0, the
frequency of the motion is twice what it would be in the
nonrotating case; this is caused by reflection by the barrier at
6=0.

The precession rate of the system is

¢ = + 20— 2wcos 0)/sin? O=w + p'/0>. (15)

We now consider the effect of dissipation. Without rota-
tion, the problem is similar to that studied for the shift mode
in tokamaks.> When a” > 1 (the dynamically stable regime)
there are two oscillatory modes which are damped on the L /
R time scale ¥, and one mode which grows on the L /R
time. This can be seen from our equations by a small angle
approximation in Eq. (11a). The equation can then be inte-
grated exactly and has three exponential solutions;
6~ exp vt, where, to first order in y/w,,

via = iwga® — 1)'? —a?y/2(e® - 1), (16)
vy = y/(@* - 1).
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FIG. 2. Evolution of the tilt angle 8 for a resistive, nonrotating case. (a) Short time evolution of tilt angle 8. Rotation absent (@ = 0). (b) Long time evolution of

6 showing loss of stability.
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FIG. 3. Evolution of the tilt angle # when both rotation and resistivity are present. (a) Short time evolution of & when rotation and resistivity are present,
showing high-frequency oscillation about centroid drift. (b) Evolution of precession angle ¢. Eventually ¢ becomes nearly constant and the dissipative terms
become effective. (¢} The evolution of p, . (d) Agreement between full dynamics and small angle approximation Eq. (14). Here & (x) refers to the change in x
from its initial value.

2520 Phys. Fluids, Vol. 28, No. 8, August 1985 E. G. Zweibel and N. Pomphrey 2520

Downloaded 30 Dec 2004 to 198.35.4.169. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



The result of a numerical integration of Eq. (11) with
@ = 0is shown in Fig. 2. In Fig. 2(a), short time evolution is
shown; @  oscillates about zero with period
27 [@}(1 — a?)]"2 In Fig. 2(b) the long time evolution is
shown; @ rapidly climbs to 7 (i.e., goes unstable) and executes
damped oscillations about its new equilibrium. In the case
depicted in Fig. 2, # s initially zero. It can be shown that this
choice almost completely eliminates the unstable mode from
the perturbation, which explains why the growth time is sub-
stantially longer than .

We now consider the full problem, with dissipation and
rotation. Figures 3(a)-3(d) show the evolution of a typical
system over the first five resistive times. The initial condi-
tions chosen were 6, =102, ,=0, § =0, ¢, =0. The
small angle approximation is clearly adequate for the short
times shown here.

Figure 3(a) shows that the motion in 8 consists of high-
frequency oscillations at frequency 2o’ superimposed on a
centroid 8, that first drifts in toward zero and then begins to
climb. This climb is the onset of a rapid increase to the vicini-
ty of 7, as shown in Fig. 4. We can understand this by consid-
ering Figs. 3(b}-3(d).

Initially, {# ), the mean value of @, is negative, as pre-
dicted by Eq. (15) for our initial conditions. This means that
D, increases [see Eq. (11b)], and 6, decreases as shown by Eq.
(14). When p,, reaches a value near 2, (¢ ) becomes positive
and p, becomes negative. This feedback between p, and é
leads to an oscillation of p, about 2w and of (¢ ) about zero.
Eventually this oscillation is damped and ¢ becomes nearly
constant. Once ¢ is constant the integrand in the dissipative
term of Eq. (11a) is no longer oscillatory, and the dissipative
term increases rapidly. Then, once the eddy currents decay,
@ increases rapidly. Figure 3(d) shows that the motion of the
centroid 8?2 is quite well represented by Eq. (14). Thus rota-
tion does not prevent the decay of the eddy currents. Instead,
the small phase shift between the tilt and field directions
eventually brakes the precession so that the eddy currents
decay. The system evolves rapidly to a damped oscillation
near 6 = 7 (Fig. 4).
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FIG. 4. Long time evolution of é. Eventually the system point falls over the
potential hill and executes damped oscillation near 8 = 7.
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FIG. 5. Numerical experiments to elucidate the role of resistive torques and
drag forces. (a) Effect of artificially keeping p, constant. (b) Effect of allow-
ing p, to evolve, but removing the dissipative term from the acceleration in
6. Here a® = 1.1 and is large enough to stabilize the tilt without precession.
(c) The same as (b), but & = 0.9, too small to stabilize tilt without preces-
sion.
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We have tested our picture of the instability by modify-
ing the equations of motion. Figure 5(a) shows the effect of
removing the dissipative term in Eq. (11b), so that p,, is artifi-
cially kept constant. Evidently @ remains bounded, execut-
ing damped oscillations around 6.. Figures 5(b) and 5(c)
show the effect of allowing resistivity to act on p,, but re-
moving the resistive term in Eq. (11a). In Fig. 5(b), @*>> 1, so
the horizontal field is large enough to stabilize the system
without rotation, and 8, remains bounded. In Fig. 5(c)a® < 1
but w'?> 1. In this case 8, grows large once the precession is
braked by resistive torques, because the horizontal field is
not strong enough to provide stability.

In Fig. 6 we show the results of a parameter study in
which the growth time for the instability, defined as the time
at which @ = 7/4, is computed as a function of a? and . The
contours show that the growth times are much more sensi-
tive to a® than to w.

We close this section with a numerical exercise in which
we calculate typical values of 3 and @ for the S-1 Sphero-
mak."?

The dynamical frequency w, = (4mBy/I)"/? is (2mB,/
MR %)"/2 for a thin ring of mass M and radius R. We relate B,
and m by an approximation to the Shafranov formula!?;
By~m/7R > In 8R /a. Taking the current, radius, and num-
ber density in the ring to be 200 kA, 50 cm, and 10" cm 3,
respectively, we find w,=1.10° sec ™.

To calculate @’ we take the radius of each coil to be 40
cm, assume its normal direction § is 7/4, and that the coil
and plasma centers are 40 cm apart. We compute the self-
inductance of the coil assuming its thickness is 2 cm. With
the other parameters as above, a® = 4.6 in the near field ap-
proximation and 3.0in the far field approximation. Equation
(16) therefore predicts that the spheromak becomes tilt un-
stableon a time scale of about two tofour timesthe L /R time
of the passive coils. We have assumed two sets of coils, one
above and one below the plasma. Our model is too simple to
describe the effects of the coils very accurately, but it does
show that a” can easily be of order unity.

0.001
.0

FIG. 6. Contours of constant growth time of the instability in units of y .
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IV. DISCUSSIONS AND CONCLUSIONS

We have studied’ the effects of rotation and resistive,
passive conductors on the tilt instability of a rotating current
ring in an external magnetic field. Several motivations exist
for this problem.

It is known from studies of similar problems? that, when
passive coils provide dynamic stabilization, the system is un-
stable on the resistive decay time of the currents in the con-
ductors. It might be expected that decay of the eddy currents
could be prevented by the fluctuating emf produced by a
tilting, precessing ring.

On the other hand the torques exerted by the resistive
coils also affect the precession. This phenomenon is impor-
tant in any system which rapidly rotates because nearby con-
ductors are never entirely absent.'* Resistive torques could
also be important in systems with rotating nonaxisymmetric

modes.
We made a simple model of a rigid ring of fixed current.

Deformation of the ring'® and changes of current® are cer-
tainly important, but they require a detailed plasma model to
compute accurately. It is unlikely that inclusion of either
effect would suppress the phase lag between the direction of
tilt and the direction of the induced field, because this lag is
caused by the finite resistivity of the passive coils. The phase
lag is ultimately responsible for the braking of the precession
because of the torque it produces on the ring. Only when the
ring precesses do the stabilizing eddy currents persist with-
out decay. Thus we conjecture that more complex models
would also eventually be destabilized by resistive torques.

The principal conclusions of our analysis are as follows:

(1) Rotation does not prevent decay of the eddy currents.
If the coils are perfectly conducting, the induced horizontal
field is exactly aligned with the direction of tilt. Resistivity
causes a small phase lag in the direction of the induced field.
The resulting torque halts the precession and the current in
the coil decay typically within less than 20 L /R times.

(2) The horizontal components of the field produced by
the coils are stabilizing, while the induced vertical field is
destabilizing (on the dynamical time scale). Stabilization is
optimized when the coils are placed close to the equatorial
plane of the ring, with their normals nearly perpendicular to
the ring normal.

(3) If the effect of resistivity on the precession rate (or p, )
is artifically suppressed, the system becomes stable because
the eddy currents are prevented from decaying. Our ad hoc
procedure for maintaining the precession [e.g., see Fig. 5(a)]
can, in principle, be replaced by an active feedback system.

Although our model is simple, we believe it provides a
framework for understanding the problem. Our results sug-
gest that rotation of the plasma, or a circumferential particle
beam, will not stabilize the system to modes on a resistive
timescale.
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